
Fault Localization to Detect Co-change Fixing Locations
Yi Li

New Jersey Institute of Technology
New Jersey, USA
yl622@njit.edu

Shaohua Wang∗
New Jersey Institute of Technology

New Jersey, USA
davidsw@njit.edu

Tien N. Nguyen
University of Texas at Dallas

Texas, USA
tien.n.nguyen@utdallas.edu

ABSTRACT

Fault Localization (FL) is a precursor step to most Automated Pro-
gram Repair (APR) approaches, which fix the faulty statements
identified by the FL tools. We present FixLocator, a Deep Learn-
ing (DL)-based fault localization approach supporting the detection
of faulty statements in one or multiple methods that need to be
modified accordingly in the same fix. Let us call them co-change

(CC) fixing locations for a fault. We treat this FL problem as dual-
task learning with two models. The method-level FL model, MethFL,
learns the methods to be fixed together. The statement-level FL
model, StmtFL, learns the statements to be co-fixed. Correct learning
in one model can benefit the other and vice versa. Thus, we simul-
taneously train them with soft-sharing the models’ parameters via
cross-stitch units to enable the propagation of the impact of MethFL

and StmtFL onto each other. Moreover, we explore a novel feature for
FL: the co-changed statements. We also use Graph-based Convolu-
tion Network to integrate different types of program dependencies.

Our empirical results show that FixLocator relatively improves
over the state-of-the-art statement-level FL baselines by locating
26.5%–155.6% more CC fixing statements. To evaluate its usefulness
in APR, we used FixLocator in combination with the state-of-the-
art APR tools. The results show that FixLocator+DEAR (the origi-
nal FL in DEAR replaced by FixLocator) and FixLocator+CURE
improve relatively over the original DEAR and Ochiai+CURE by
10.5% and 42.9% in terms of the number of fixed bugs.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Fault Localization; Deep Learning; Co-Change Fixing Locations

ACM Reference Format:

Yi Li, ShaohuaWang, and Tien N. Nguyen. 2022. Fault Localization to Detect
Co-change Fixing Locations. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3540250.3549137

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549137

1 INTRODUCTION

To assist developers in the bug-detecting and fixing process, several
approaches have been proposed for Automated Program Repair

(APR) [21]. A common usage of an APR tool is that one needs to
use a fault localization (FL) tool [41] to locate the faulty statements
that must be fixed, and then uses an APR tool to generate the fixing
changes for those detected statements. The input of an FL model
is the execution of a test suite, in which some of the test cases
are passing or failing ones. Specifically, the key input is the code
coverage matrix in which the rows and columns correspond to the
statements and test cases, respectively. Each cell is assigned with
the value of 1 if the statement is executed in the respective test
case, and with the value of 0, otherwise. An FL model uses such
information to identify the list of suspicious lines of code that are
ranked based on their associated suspiciousness scores [41]. In recent
advanced FL, several approaches also support fault localization at
method level to locate faulty methods [22, 24].

The FL approaches can be broadly divided into the following cate-
gories: spectrum-based fault localization (SBFL) [6, 17, 18],mutation-

based fault localization (MBFL) [31, 34, 35], and machine learning

(ML) and deep learning (DL) fault localization [22, 24]. For SBFL
approaches, the key idea is that a line covered more in the fail-
ing test cases than in the passing ones is more suspicious than a
line executed more in the passing ones. To improve SBFL, MBFL
approaches [31, 34, 35] enhance the code coverage matrix by mod-
ifying a statement with mutation operators, and collecting code
coverage when executing the mutated programs with the test cases.
The MBFL approaches apply suspiciousness score formulas in the
same manner as in SBFL approaches on the matrix for each origi-
nal statement and its mutated code. Finally, ML and DL-based FL
approaches explore the code coverage matrix and apply different
neural network models for fault localization.

Despite their successes, the state-of-the-art FL approaches are
still limited in locating all dependent fixing locations that need to
be repaired at the same time in the same fix. In practice, there are
many bugs that require dependent changes in the same fix to multiple

lines of code in one or multiple hunks of the same or different methods

for the program to pass the test cases. For those bugs, applying the
fixing change to individual statements once at a time will not make
the program pass the test case after the change to one statement.
This capability to detect the fixing locations of the co-changes in a
fix for a bug (let us call them Co-change (CC) Fixing Locations) is
crucial for an APR tool. Such capability will enable an APR tool to
make the correct and complete changes to fix a bug.

The state-of-the-art FL approaches do not satisfy that require-
ment. From the ranked list of suspicious statements returned from
an existing FL model, a naive approach to detect CC fixing locations
would be to take the top 𝑘 statements in that list and to consider
them as to be fixed together. This solution might be ineffective

659

https://doi.org/10.1145/3540250.3549137
https://doi.org/10.1145/3540250.3549137
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3549137&domain=pdf&date_stamp=2022-11-09

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yi Li, Shaohua Wang, and Tien N. Nguyen

because the mechanisms used in the state-of-the-art FL approaches
have never considered the co-change nature of those fixes. Our
empirical evaluation also confirmed that (Section 8.1).

Detecting all the CC fixing locations at multiple statements in
potentially multiple methods is challenging. A naive solution would
be detecting the potential methods that need to be fixed together
and then detecting potential statements that need to be changed
together in each of those methods. However, doing so will create
a confounding effect from the inaccuracy of the detection of the
co-fixed methods to that of the co-fixed statements.

We propose FixLocator, a fault localization approach to de-
rive the co-change fixing locations in the same fix for a fault (i.e,
multiple faulty statements in possible multiple faulty methods). To
avoid the confounding effect in that naive solution, we treat this
problem as dual-task learning with two dedicated models. First,
the method-level FL model (MethFL) learns the methods that need to
be modified in the same fix. Second, the statement-level FL model
(StmtFL) learns the co-fixed statements in the same or different meth-
ods. The intuition is that they are closely related, which we refer
to as duality. Correct learning for a model can benefit the other and

vice versa. If two statements in two methods are fixed together for
a bug, those methods are also co-fixed. If two methods are co-fixed,
some of their statements are also co-fixed. Exploring this duality
can provide useful constraints to detect CC fixing locations for a
bug. Thus, instead of cascading the two models MethFL and StmtFL,
we train them simultaneously with the soft-sharing of the mod-
els’ parameters to exploit this duality. Specifically, we leverage the
cross-stitch units [30] to connect MethFL and StmtFL. In a cross-stitch
unit, the sharing of representations between MethFL and StmtFL is
modeled by learning a linear combination of the input features
from the two models. The cross-stitch units enable the propagation
of the impact of MethFL and StmtFL on each other.

In addition to the new solution in dual-task learning, we utilize
a novel feature for this CC fixing location problem: co-changed
statements, which have never been exploited in FL. The rationale
is that the co-changed statements in the past might become the
statements that will be fixed together in the future. Finally, since the
co-fixed statements are often interdependent, we use Graph-based
Convolution Network (GCN) [26] to integrate different types of
program dependencies among statements, e.g., data and control
dependencies, execution traces, stack traces, etc. We also encode
test coverage and co-changed/co-fixed statements in the graph. The
GCN model learns and predicts the bugginess of the statements.

We conducted several experiments to evaluate FixLocator on
Defects4J-v2.0 [1]. Our empirical results show that FixLocator
improves the baselines, CNN-FL [50], DeepFL [22], DeepRL4FL [24],
and DEAR’s FL [25] by 16.6%, 16.9%, 9.9%, and 20.6% respectively,
in terms of Hit-1 (i.e., the percentage of bugs in which the predicted
set overlaps with the oracle set for at least one faulty statement),
and by 33.6%, 40.3%, 26.5%, and 57.5% in terms of Hit-2 (i.e., the
percentage of bugs in which the number of overlapping statements
between the predicted and oracle sets is ≥2), 43.9%, 46.4%, 28.1%,
and 51.9% in terms of Hit-3, respectively. FixLocator also improves
those baselines by 32.0%, 38.8%, 20.8%, and 46.1% in terms of Hit-All
(i.e., the predicted set exactly matches with the oracle set for a bug).

To evaluate its usefulness in APR, we combined it with the APR
tools, DEAR [25] and CURE [15]. We replaced DEAR’s FL module

1 public void toSource(final CodeBuilder cb, int inputSeqNum, Node root) {
2 ...
3 - String code = toSource(root, sourceMap);
4 + String code = toSource(root, sourceMap, inputSeqNum == 0);
5 if (!code.isEmpty()) {
6 cb.append(code);
7 } ...
8 }
9 //--
10 @Override
11 String toSource(Node n) {
12 initCompilerOptionsIfTesting();
13 - return toSource(n, null);
14 + return toSource(n, null, true);
15 }
16 //--
17 - private String toSource(Node n, SourceMap sourceMap)
18 + private String toSource(Node n, SourceMap sourceMap, boolean firstOutput)
19
20 builder.setSourceMapDetailLevel(options.sourceMapDetailLevel);
21 - builder.setTagAsStrict(
22 + builder.setTagAsStrict(firstOutput &&
23 options.getLanguageOut(a) == LanguageMode.ECMASCRIPT5_STRICT);
24 builder.setLineLengthThreshold(options.lineLengthThreshold);
25
26 }

Figure 1: Co-Change Fixing Locations for a Fault

with FixLocator for a variant, DEAR𝐹𝑖𝑥𝐿 . Our result shows that
DEAR𝐹𝑖𝑥𝐿 and FixLocator+CURE improve relatively DEAR and
Ochiai+CURE by 10.5% and 42.9% in terms of numbers of fixed bugs.

Through our ablation analysis on the impact of different features
and modules of FixLocator, we showed that all designed features/-
modules have contributed to its high performance. Specifically, the
proposed dual-task learning significantly improves the statement-
level FL by up to 12.8% in terms of Hit-1. The designed feature
of co-change relations among methods and statements has also
positively contributed to FixLocator’s high accuracy level.

The contributions of this paper are listed as follows:
(1) FixLocator: Advancing DL-based Fault Localization

to derive the co-change fixing locations (multiple faulty
statements) in the same fix for a bug. We treat that problem
as dual-task learning to propagate the impact between
the method-level and statement-level FL.

(2) Novel graph-based representation learning with GCN

andnovel type of features in co-changed statements for

FL enable dual-task learning to derive CC fixing locations.
(3) Extensive empirical evaluation.We evaluated FixLoca-

tor against the recent DL-based FL models to show its accu-
racy and usefulness in APR. Our data/tool are available [3].

2 MOTIVATING EXAMPLE

2.1 Example and Observations

Let us start with a real-world example. Figure 1 shows a bug fix in
the Defects4J dataset that require multiple interdependent changes
to multiple statements in different methods. The bug occurred
when the method call to setTagAsStrict did not consider the first
output in its arguments. Therefore, for fixing, a developer adds
a new argument in the method toSource at line 18, and uses that
argument in the method call setTagAsStrict (firstOutput,...) at line
22. Because the method toSource at line 17 was changed, the two
callers at line 3 of the method toSource (line 1) and at line 13 of the
method toSource (line 11) need to be changed accordingly.

660

Fault Localization to Detect Co-change Fixing Locations ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

2.1.1 Observation 1 [Co-change Fixing Locations]. In this example,
the changes to fix this bug involve multiple faulty statements that
are dependent on one another. Fixing only one of the faulty state-
ments will not make the program pass the failing test(s). Fixing
individual statements once at a time in the ranked list returned
from an existing FL tool will also not make the program pass the
tests. For an APR model to work, an FL tool needs to point out all of
those faulty statements to be changed in the same fix. For example,
all four faulty statements at lines 17, 21, 3, and 13 need to modified
accordingly in the same fix to fix the bug in Figure 1.

2.1.2 Observation 2 [Multiple Faulty Methods]. As seen, this bug
requires an APR tool to make changes to multiple statements in
three different methods in the same fix: toSource(...) at lines 17
and 21, toSource(...) at line 3, and toSource (...) at line 13. Thus, it
is important for an FL tool to connect and identify these multiple
faulty statements in potentially different methods.

Traditional FL approaches [49, 52] using program analysis (PA),
e.g., execution flow analysis, are restricted to specific PA techniques,
thus, not general to locate all types of CC fixing locations. Spectrum-
based [6, 16], mutation-based [31, 34, 35]), statistic-based [27], and
machine learning (ML)-based FL approaches [22, 24] could implic-
itly learn the program dependencies for FL purpose. However, de-
spite their successes, the non-PA FL approaches do not support the
detection of multiple locations that need to be changed in the same fix

for a bug, i.e., Co-Change (CC) Fixing Locations. The spectrum-based
and ML-based FL models return a ranked list of suspicious state-
ments according to the corresponding suspiciousness scores. In this
example, the lines 13, 17, 21, and the other lines (e.g., 12, 20 and
24) are executed in the same passing or failing test cases, thus as-
signed with the same scores by spectrum- and mutation-based FL
approaches. A user would not be informed on what lines need to be
fixed together. Those non-PA, especially ML-based FL approaches,
do not have a mechanism to detect CC fixing locations.

In this work, we aim to advance the level of deep learning (DL)-
based FL approaches to detect CC fixing statements. However, it is
not trivial. A solution of assuming the top-𝑘 suspicious statements
from a FL tool as CC fixing locations does not work because even
being the most suspicious, those statements might not need to be
changed in the same fix. In this example, all of the above lines with
the same suspiciousness scores would confuse a fixer.

Moreover, another naive solution would be to use a method-
level FL tool to detect multiple faulty methods first and then use a
statement-level FL tool to detect the statements within each faulty
method. As we will show in Section 7, the inaccuracy of the first
phase of detecting faulty methods will have a confounding effect
on the overall performance in detecting CC fixing statements.

2.2 Key Ideas

We propose FixLocator, an FL approach to locate all the CC fixing
locations (i.e., faulty statements) that need to be changed in the
same fix for a bug. In designing FixLocator, we have the following
key ideas in both new model and new features:

2.2.1 Key Idea 1 [Dual-Task Learning for Fault Localization]. To
avoid the confounding effect in a naive solution of detecting faulty
methods first and then detecting faulty statements in thosemethods,

we design an approach that treats this FL problem of detecting
dependent CC fixing locations as dual-task learning between the
method-level and statement-level FL. First, the method-level FL

model (MethFL) aims to learn the methods that need to be modified
in the same fix. Second, the statement-level FL model (StmtFL) aims
to learn the co-fixing statements regardless of whether they are in
the same or different methods.

Intuitively, MethFL and StmtFL are related to each other, in which
the results of one model can help the other. We refer to this relation
as duality, which can provide some useful constraints for FixLo-
cator to learn dependent CC fixing locations. We conjecture that
the joint training of the two models can improve the performance
of both models, when we leverage the constraints of this duality
in term of shared representations. For example, if two statements
in two different methods𝑚1 and𝑚2 were observed to be changed
in the same fix, then it should help the model learn that𝑚1 and
𝑚2 were also changed together to fix the bug. If two methods were
observed to be fixed together, then some of their statements were
changed in the same fix as well. In our model, we jointly train MethFL

and StmtFLwith the soft-sharing of the models’ parameters to exploit
their relation. Specifically, we use a mechanism, called cross-stitch

unit [30], to learn a linear combination of the input features from
those two models to enable the propagation of the impact of MethFL

and StmtFL on each other. We also add an attention mechanism in
the two models to help emphasize on the key features.

2.2.2 Key Idea 2 [Co-change Representation Learning in Fault Lo-
calization]. In detecting CC fixing locations, in addition to a new
dual-task learning model in key idea 1, we use a new feature: co-
change information among statements/methods, which has never
explored in prior fault localization research. The rationale is that
the co-changed statements/methods in the past might become the
statements/methods that will be fixed together for a bug in the fu-
ture. We also encode the co-fixed statements/methods in the same
fixes. The co-changed/co-fixed statements/methods in the same
commit are used to train the models.

2.2.3 Key Idea 3 [Graph Modeling for Dependencies among State-
ments/Methods]. The statements/methods that need to be fixed
together are interdependent via several dependencies. Thus, we
use Graph-based Convolution Network (GCN) [26] to model differ-
ent types of dependencies among statements/methods, e.g., data
and control dependencies in a program dependence graph (PDG),
execution traces, stack traces, etc. We encode the co-change/co-fix
relations into the graph representations with different types of edges
representing different relations. The GCNmodel enables nodes’ and
edges’ attributes and learns to classify the nodes as buggy or not.

3 FIXLOCATOR: APPROACH OVERVIEW

3.1 Training Process

Figure 2 summarizes the training process. The input of training
includes the passing and failing test cases, and the source code un-
der study. The output includes the trained method-level FL model
(detecting co-fixed methods) and the trained statement-level FL
model (detecting co-fixed statements). The training process has
three main steps: 1) Feature Extraction, 2) Graph-based Feature Rep-
resentation Learning, and 3) Dual-Task Learning Fault Localization.

661

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yi Li, Shaohua Wang, and Tien N. Nguyen

Figure 2: FixLocator: Training Process

3.1.1 Step 1. Feature Extraction. (Section 4). We aim to extract
the important features for FL from the test coverage and source code
including co-changes. The features are extracted from two levels:
statements and methods. At each level, we extract the important
attributes of statements/methods, as well as the crucial relations
among them. We use graphs to model those attributes and relations.

For a method𝑚, we collect as its attributes 1) method content:
the sequences of the sub-tokens of its code tokens (excluding sepa-
rators and special tokens), and 2) method structure: the Abstract
Syntax Tree (AST) of the method. For the relations among methods,
we extract the relations involving in the following:

1) Execution flow (the calling relation, i.e.,𝑚 calls 𝑛),
2) Stack trace after a crash, i.e., the order relation among the

methods in the stack trace (the dynamic information in execution
and stack traces have been showed to be useful in FL [22, 24]),

3) Co-change relation in the project history (two methods that
were changed in the same commit are considered to have the co-
change relation),

4) Co-fixing relation among the methods (two methods that were
fixed for the same bug are considered to have the co-fixing relation),

5) Similarity: we also extract the similar methods in the project
that have been buggy before in the project history. We keep only
the most similar method for each method.

For a statement 𝑠 , we extract both static and dynamic informa-
tion. First, for static data, we extract the AST subtree that corre-
sponds to 𝑠 to represent its structure. We also extract the list of
variables in 𝑠 together with their types, forming a sequence of names
and types, e.g., “name String price int ...". Second, for dynamic data,
we encode the test coverage matrix for 𝑠 into the feature vectors.

At both method and statement levels, we use graphs to represent
the methods and statements, and their relations. Let us call them
the method-level and statement-level feature graphs.

3.1.2 Step 2. Graph-based Feature Representation Learning. This
step is aimed to learn the vector representations (i.e., embeddings)
for the nodes in the feature graphs from step 1. The input includes
the method-level and statement-level feature graphs. The output
includes the embeddings for the nodes in the method-/statement-
level feature graphs. The graph structures for both feature graphs
are un-changed after this step.

For the content of a method or statement, we use the embedding
techniques accordingly to feature representations (Section 5). For
the method’s content and a list of variables in a statement, the repre-
sentation is a sequence of sub-tokens. We use GloVe [36] to produce

the embeddings for all sub-tokens as we consider a method or state-
ment as a sentence in each case. We then use Gated Recurrent Unit
(GRU) [14] to produce the vector for the entire sequence.

For the structure of a method or statement, the representation is a
(sub)tree in the AST. For this, we first use GloVe [36] to produce the
embeddings for all the nodes in the sub-tree, considering the entire
method or statement as a sentence in each case. After obtaining
the sub-tree where the nodes are replaced by their GloVe’s vectors,
we use TreeCaps [12], which captures well the tree structure, to
produce the embedding for the entire sub-tree.

For the code coverage representation, we directly use the two
vectors for coverage and passing/failing and concatenate them
to produce the embedding. The embedding for the most similar
buggy method is computed in the same manner as explained with
GloVe and TreeCaps. Finally, the embeddings for the attributes
of the nodes are used in the fully connected layers to produce
the embedding for each node in the feature graph at the method
level. Similarly, we obtain the feature graph at the statement level in
which each node is the resulting vector of the fully connected layers.

3.1.3 Step 3. Dual-Task Learning Fault Localization. After the fea-
ture representation learning step, we obtain two feature graphs at
the method and statement levels, in which a node in either graph
is a vector representation. The two graphs are used as the input for
dual-task learning. For dual-task learning, we use two Graph-based
Convolution Network (GCN) models [19] for the method-level FL
model (MethFL) and the statement-level FL model (StmtFL) to learn the
CC fixing methods and CC fixing statements, respectively. During
training, the two feature graphs at the method and statement levels
are used as the inputs of MethFL and StmtFL. The two GCN models
play the role of binary classifiers for the bugginess for the nodes
(i.e., methods/statements). We train the two models simultaneously
with soft-sharing of parameters. Details will be given in Section 6.

3.2 Predicting Process

The input of the prediction process (Figure 3) includes the test cases
and the source code in the project. The steps 1–2 of the process is the
same as in training. In step 3, the feature graph 𝑔𝑀 at the statement
level built from the source code is used as the input of the trained
StmtFL model, which predicts the labels of the nodes in that graph.
The labels indicate the bugginess of the corresponding statements
in the source code, which represent the CC fixing statements. If one
aims to predict the faulty methods, the trained MethFL model can be
used on the feature graph to produce the CC fixing methods.

662

Fault Localization to Detect Co-change Fixing Locations ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 3: FixLocator: Prediction Process

Figure 4: Method-level Feature Extraction 𝐺𝑀 for𝑀1

4 FEATURE EXTRACTION

4.1 Method-Level Feature Extraction 𝐺𝑀

Figure 4 illustrates the key attributes and relations that we collect.
For each method𝑀1, we extract the following attributes:

1) The method’s content: we remove special characters and sepa-
rators in the method’s interface and body, and use naming conven-
tion to break each code token into the sub-tokens. For example, in
Figure 4, the node𝑀1 represents the method computeGeometricalPro-

perties in Figure 5. For the content for𝑀1, the extracted sequence
of sub-tokens is protected, void, compute, Geometrical, Properties, etc.

2) The method’s structure: the corresponding parser is used to
build the AST of the method (e.g., JDT [4] for Java code).

3) Most similar faulty method: we keep the most similar faulty
method𝑀𝑏 with𝑀1. Note that we keep𝑀𝑏 as an attribute of𝑀1,
rather than representing 𝑀𝑏 in the feature graph. The rationale
is that 𝑀𝑏 might be in the past and might not be present in the
current version of the project. Two methods are similar when they
have similar sequences (measured by the cosine similarity) of the
sub-tokens (represented by the GloVe embeddings [36]). For 𝑀𝑏 ,
we build its AST and keep it as an attribute for𝑀1.

We encode as the edges three types of relations:
1) Calling relation in a stack trace: we encode into the feature

graph the calling relations in a stack trace of a failed test case as we
ran it. In Figure 4, a blue edge connects𝑀𝑖 to𝑀𝑗 for that relation.
Since the stack trace can be long, from the failing/crash point, we
collect only part of the stack trace with 𝑛 levels of depth from that
point. Following a prior work [44], in our experiment, 𝑛=10.

2) Calling relations in an execution trace: Similar to the stack
trace, an execution trace needs to be encoded in the feature graph.
It can be very long from the failing/crash point. Thus, we keep the
methods with only𝑚 levels of length in calling relations from that
point. In our experiment, we use𝑚=10. Figure 4 illustrates a few
calling relations (in green color) in execution traces.

Figure 5: Stmt-level Feature Extraction 𝑔𝑀 for𝑀1 in Figure 4

3) Co-change/co-fixing relation: Such a relation exists between
two methods that were changed/fixed in a commit. Such an edge is
made into two one-directional edges (e.g.,𝑀5 ⇆ 𝑀6 in Figure 4).

4.2 Statement-Level Feature Extraction 𝑔𝑀

For each statement, we extract the following attributes.
1) Code coverage: we run the test cases and collect code cov-

erage information. For each statement 𝑠 , we use a vector 𝐶 =

<𝑐1, 𝑐2, ..., 𝑐𝐾> (𝐾 is the number of test cases) to encode code cover-
age in which 𝑐𝑖 = 1 if the test 𝑡𝑖 covers 𝑠 , and 𝑐𝑖 = 0 otherwise. We
use another vector 𝑅 = <𝑟1, 𝑟2, ..., 𝑟𝐾> to encode the passing/failing
of a test case in which 𝑟𝑖 = 1 if the test case 𝑡𝑖 is a passing one and
𝑟𝑖 = 0 otherwise. 𝑅 is common for all the statements. We concate-
nate𝐶 and 𝑅 for each statement to obtain the code coverage feature
vector 𝑉𝐶𝑜𝑣 = <𝑐1, 𝑐2, ..., 𝑐𝐾 , 𝑟1, 𝑟2, ..., 𝑟𝐾>. We used DeepRL4FL’s
test ordering algorithm [24] as the ordering of test cases is useful in
FL. For the different numbers of test cases across files, we perform
zero padding to make the vectors have the same length.

2) AST structure: we extract the sub-tree in the AST that corre-
sponds to the current statement.

3) List of variables: We break the names into sub-tokens. In Fig-
ure 5, the sequence for the variable list is [tree, BSPTree, Euclidean2D,...].

We encode the following types of relations among statements:
1) Program dependence graph (PDG): as suggested in [24], the

relations among statements in an PDG are important in FL, thus,
we integrate them into the feature graph. In Figure 5, the blue edges
represent the relations in the PDG for the given code. The statement
at line 4 has a control/data dependency with the one at line 5, which
connects to the ones at lines 7–8, and to the ones at lines 10–11.

2) Execution flow in an execution trace: if two statements are
executed consecutively in an execution trace, we will connect them
together. In Figure 5, we have the execution flow 𝑆5 → 𝑆7, 𝑆7 → 𝑆8.

3) Co-change/co-fixing relation: we maintain the co-change/co-
fixing relations among statements. In Figure 5, 𝑆4 and 𝑆5 have been
changed in a commit, thus, two co-change edges connect them.

5 FEATURE REPRESENTATION LEARNING

The goal of this step is to learn to build the vector representations
for the nodes in the feature graphs at the method and statement
levels. At either level, the input includes the attributes of either a
method or a statement as in Figures 4 and 5. The output is each
feature graph in which the nodes are replaced by their embeddings.

5.1 Method-Level Representation Learning

Figure 6 shows how we build the vectors for a method’s attributes.

663

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yi Li, Shaohua Wang, and Tien N. Nguyen

Figure 6: Method-level Feature Representation Learning

Figure 7: Statement-level Feature Representation Learning

1) The method’s content: the method’s content is represented by
the sequence 𝑆𝑒𝑞𝑐 of the sub-tokens built from the code tokens in
the interface and the body of the method. To vectorize each sub-
token in 𝑆𝑒𝑞𝑐 , we use a word embedding model, called GloVe [36],
and treat each method as a sentence. After this vectorization, for
the method, we obtain the sequence <𝑣1, 𝑣2, ..., 𝑣𝑛> of the vectors
of the sub-tokens in 𝑆𝑒𝑞𝑐 . We then apply a sequential model on
the sequence <𝑣1, 𝑣2, ..., 𝑣𝑛> to learn the “summarized” vector𝑉𝑀𝐶
that represents the method’s content. Specifically, we use Gated
Recurrent Unit (GRU) [13], a type of RNN layer that is efficient in
learning and capturing the information in a sequence.

2) The method’s structure: we first treat the method as the se-
quence of tokens and use GloVe to build the embeddings for all
the tokens as in 1). We then replace every node in the AST of
the method with the GloVe’s vector of the corresponding token of
the node (Figure 6). From the tree of vectors, we use a tree-based
model, called TreeCaps [12], to capture its structure to produce the
“summarized” vector 𝑉𝐴𝑆𝑇 representing the method’s structure.

3)Most similar faulty method: for a method, we process the most
similar buggymethod𝑀𝑏 in the sameway as themethod’s structure
via GloVe and TreeCaps to learn the vector 𝑉𝑀𝑆𝐵𝑀 for𝑀𝑏 .

Finally, for each method𝑀1, we obtain 𝑉𝑀𝐶 , 𝑉𝐴𝑆𝑇 , and 𝑉𝑀𝑆𝐵𝑀 .

5.2 Statement-Level Representation Learning

Figure 7 shows howwe build the vectors for a statement’s attributes.
1) Code Coverage: we directly use the vector 𝑉𝐶𝑜𝑣 = <𝑐1, 𝑐2, ...,

𝑐𝐾 , 𝑟1, 𝑟2, ..., 𝑟𝐾> computed in Section 4.2 for the next computation.
2) The statement’s structure: we process the AST subtree repre-

senting the statement’s structure in the same manner (via GloVe
and TreeCaps) as for the method’s structure to produce 𝑉𝑠𝑢𝑏𝑡𝑟𝑒𝑒 .

3) List of variables: as with the method’s content, we run GloVe
on the sequence of sub-tokens to produce a sequence of vectors
and use GRU to produce the summarized vector 𝑉𝑣𝑎𝑟 for the list.

Finally, for each statement 𝑆 , we obtain𝑉𝐶𝑂𝑉 ,𝑉𝑠𝑢𝑏𝑡𝑟𝑒𝑒 , and𝑉𝑣𝑎𝑟 .

Figure 8: Dual-Task Learning Fault Localization

5.3 Feature Representation Learning

After computing the three embeddings for three attributes of each
method, we use three fully connected layers to standardize each
vector’s length to a chosen value 𝑙 . Similarly, we use three fully con-
nected layers for the three embeddings for each statement. Then,
for a method or a statement, we concatenate the three output vec-
tors from the fully connected layer to produce the vector 𝑉𝑀 for
the method and the other three vectors for 𝑉𝑆 for the statement
with the length of (𝑙 × 3).

After all, for a method𝑀 , we have the method-level graph 𝐺𝑀
and the statement-level graph 𝑔𝑀 with its statements. The nodes in
𝐺𝑀 (Figure 4) now are the vectors computed for methods, and the
nodes in 𝑔𝑀 are the vectors 𝑉𝑆 for the statements in𝑀 (Figure 5).

6 DUAL-TASK LEARNING FOR FAULT

LOCALIZATION

Figures 8 and 9 illustrate our dual-task learning for fault localization.
In the training dataset, for each bug 𝐵, to ensure the matching of a

method and its corresponding statements, we build for each faulty
method𝑀 the pairs (𝐺𝑀 , 𝑔𝑀): 1) 𝐺𝑀 , the method-level graph (Fig-
ure 4 with nodes replaced by vectors); and 2)𝑔𝑀 , the statement-level
graph (Figure 5) containing all the statements belonging to𝑀 . To
ensure the co-fixing connections among the buggy methods for the

same bug 𝐵, we model the co-fixed methods of𝑀 via co-fixed rela-
tions in 𝐺𝑀 (Figure 4). At the output layer, we label those methods
as faulty/co-fixing. The co-fixed statements within 𝑔𝑀 for the bug
𝐵 are also labeled as faulty/co-fixing. The non-buggy methods or
statements are labeled as non-faulty. The pairs (𝐺𝑀 , 𝑔𝑀) are used as
the input of this dual-task learning model (Figure 8). We process all
the faulty methods𝑀 for each bug 𝐵, and non-buggy methods.

In prediction, for each method 𝑀∗ in the project, we build the
pair (𝐺𝑀∗ , 𝑔𝑀∗) and feed it to the trained dual-task model. In the
output graphs, each node (for a method or a statement) will be
classified as either faulty/co-fixing or non-faulty. The nodes with
faulty/co-fixing labels in 𝑔𝑀∗ are the co-fixing statements for the
bug. Let us explain our dual-task learning in details.

6.1 Graph Convolutional Network (GCN) for FL

First, FixLocator has two GCN models [19], each for FL at the
method and statement levels. GCN processes the attributes of the
nodes (vectors) and their edges (relations) in feature graphs. Each
GCN model has 𝑛 − 1 pairs of a graph convolution layer (Conv) and

664

Fault Localization to Detect Co-change Fixing Locations ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 9: Dual-Task Learning via Cross-stitch Unit

a rectified linear unit (ReLU). They are aimed to consume and learn
the characteristic features in the input feature graphs. The last pair
of each GCN model is a pair of a graph convolution layer (Conv)
and a softmax layer (SoftMax). The SoftMax layer plays the role of the
classifier to determine whether a node for a method or a statement
is labeled as faulty/co-fixing or non-faulty.

6.2 Dual-Task Learning with Cross-stitch Units

In a regular GCN model, those above pairs of Conv and ReLU are
connected to one another. However, to achieve dual-task learning
betweenmethod-level and statement-level FL (methFL and stmtFL), we
apply a cross-stitch unit [30] to connect the two GCN models. The
sharing of representations between methFL and stmtFL is modeled by
learning a linear combination of the input features in both feature
graphs 𝐺𝑀 and 𝑔𝑀 . At each of the ReLU layer of each GCN model
(Figure 9), we aim to learn such a linear combination of the output
from the graph convolution layers (Conv) of methFL and stmtFL.

The top sub-network in Figure 8 gets direct supervision from
methFL and indirect supervision (through cross-stitch units) from
stmtFL. Cross-stitch units regularize methFL and stmtFL by learning and
enforcing shared representations by combining feature maps [30].
Formulation. For each pair of the GCN model, the outputs of the
ReLU layer, called the hidden states, are computed as follows:

𝐴 = 𝐷 ′− 1
2𝐴′𝐷 ′−1

2
(1)

𝐻 𝑖 = Δ(𝐴𝑋 𝑖𝑊 𝑖) (2)

Where 𝐴′ is the adjacency matrix of each feature graph; 𝐷 ′ is the
degree matrix;𝑊 𝑖 is the weight matrix for layer 𝑖; 𝑋 𝑖 is the input
for layer 𝑖; 𝐻 𝑖 is the hidden state of layer 𝑖 and the output from the
ReLU layer; and Δ is the activation function ReLU. In a regular GCN,
𝐻 𝑖 is the input of the next layer of GCN (i.e., the input of Conv).

In Figures 8 and 9, a cross-stitch unit is inserted between the ReLU

layer of the previous pair and the Conv layer of the next one. The
input of the cross-stitch unit includes the outputs of the two ReLU

layers: 𝐻 𝑖
𝑀

and 𝐻 𝑖
𝑆
(i.e., the hidden states of those layers in methFL

and stmtFL). We aim to learn the linear combination of both inputs
of the cross-stitch unit, which is parameterized using the weights 𝛼 .
Thus, the output of the cross-stitch unit is computed as:[

𝑋 𝑖+1
𝑀

𝑋 𝑖+1
𝑆

]
=

[
𝛼𝑀𝑀 𝛼𝑀𝑆
𝛼𝑆𝑀 𝛼𝑆𝑆

] [
𝐻 𝑖
𝑀
𝐻 𝑖
𝑆

]
(3)

𝛼 is the trainable weight matrix; 𝑋 𝑖+1
𝑀

and 𝑋 𝑖+1
𝑆

are the inputs for
the (𝑖 + 1)𝑡ℎ layers of the GCNs at the method and statement levels.
𝑋 𝑖+1
𝑀

and 𝑋 𝑖+1
𝑆

contain the information learned from both MethFL

and StmtFL, which helps achieve the main goal for dual-task learning
to enhance the performance of fault localization at both levels.

In general, 𝛼s can be set. If 𝛼𝑀𝑆 and 𝛼𝑆𝑀 are set to zeros, the
layers are made to be task-specific. The 𝛼 values model linear com-
binations of feature maps. Their initialization in the range [0,1] is
important for stable learning, as it ensures that values in the output
activation map (after cross-stitch unit) are of the same order of
magnitude as the input values before linear combination [30].

If the sizes of the 𝐻 𝑖
𝑀

and 𝐻 𝑖
𝑆
are different, we need to adjust the

sizes of the matrices. From Formula 3, we have:

𝑋 𝑖+1𝑀 = 𝛼𝑀𝑀𝐻
𝑖
𝑀 + 𝛼𝑀𝑆𝐻 𝑖𝑆 (4)

𝑋 𝑖+1𝑆 = 𝛼𝑆𝑀𝐻
𝑖
𝑀 + 𝛼𝑆𝑆𝐻 𝑖𝑆 (5)

We resize 𝐻 𝑖𝑠 in Formula 4 and resize 𝐻 𝑖𝑚 in Formula 5 if needed.
We use the bilinear interpolation technique [39] in image processing
for resizing. We pad zeros to the matrix to make the aspect ratio
1:1. If the size needs to be reduced, we do the center crop on the
matrix to match the required size.

FixLocator also has a trainable threshold for SoftMax to classify
if a node corresponding to a method or a statement is faulty or not.

7 EMPIRICAL EVALUATION

7.1 Research Questions

For evaluation, we seek to answer the following research questions:
RQ1. Comparison with State-of-the Art Deep Learning (DL)-

basedApproaches.Howwell does FixLocator perform compared
with the state-of-the-art DL-based fault localization approaches?
RQ2. Impact Analysis of Dual-Task Learning. How does the
dual-task learning scheme affect FixLocator’s performance?
RQ3. Sensitivity Analysis. How do various factors affect the
overall performance of FixLocator?
RQ4. Evaluation on Python Projects. How does FixLocator
perform on Python code?
RQ5. Extrinsic Evaluation on Usefulness. How much does
FixLocator help an APR tool improve its bug-fixing?

7.2 Experimental Methodology

7.2.1 Dataset. We use a benchmark dataset Defects4J V2.0.0 [1]
with 835 bugs from 17 Java projects. For each bug in a project 𝑃 ,
Defects4J has the faulty and fixed versions of the project. The faulty
and fixed versions contain the corresponding test suite relevant to
the bug.With the Diff comparison between faulty and fixed versions
of a project, we can identify the faulty statements. Specifically,
for a bug in 𝑃 , Defects4J has a separate copy of 𝑃 but with only
the corresponding test suite revealing the bug. For example, 𝑃1, a
version of 𝑃 , passes a test suite𝑇1. Later, a bug 𝐵1 in 𝑃1 is identified.
After debugging, 𝑃1 has an evolved test suite𝑇2 detecting the bug. In
this case, Defects4J has a separate copy of the buggy 𝑃1 with a single
bug, together with the test suite 𝑇2. Similarly, for bug 𝐵2, Defects4J
has a copy of 𝑃2 together with𝑇3 (evolving from𝑇2), and so on. We
do not use the whole T of all test suites for training/testing. For
within-project setting, we test one bug 𝐵𝑖 with test suite 𝑇(𝑖+1) by

665

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yi Li, Shaohua Wang, and Tien N. Nguyen

training on all other bugs in 𝑃 . We conducted all the experiments
on a server with 16 core CPU and a single Nvidia A100 GPU.

In Defects4J-v2.0, regarding the statistics on the number of bug-
gy/fixed statements for a bug, there are 199 bugs with one bug-
gy/fixed statement, 142 bugs with two, 90 bugs with three, 78
bugs with four, 43 bugs with five, and 283 bugs with >5 buggy
statements. Regarding the statistics on the number of buggy/fixed
methods/hunks for a bug, there are 199 bugs with one-method/one-
statement, 105 bugs with one-method/multi-statements, 142 bugs
with multi-methods/one-statement for each method, 61 bugs with
multi-methods/multi-statements for each method, and 357 bugs
with multiple methods, each has one or multiple buggy statements.
Thus, there are 665 (out of 864 bugs) with CC fixing statements.

7.2.2 Experimental Setup and Procedures.
RQ1. Comparison with DL-based FL Approaches.

Baselines. Our tool aims to output a set of CC fixing statements
for a bug. However, the existingDeep Learning-based FL approaches
can produce only the ranked lists of suspicious statements with
scores. Thus, we chose as baselines the most recent, state-of-the-
art, DL-based, statement-level FL approaches: (1) CNN-FL [50]; (2)
DeepFL [22]; and (3) DeepRL4FL [24]; then, we use the predicted,
ranked list of statements as the output set. For the comparison in

ranking with those ranking baselines, we convert our tool’s result
into a ranked list by ranking the statements in the predicted set
by the classification scores (i.e., before deriving the final set). We
also compare with the CC fixing-statement detection module in
DEAR [25], a multi-method/multi-statement APR tool.

Procedures.We use the leave-one-out setting as in prior work [22,
23] (i.e., testing on one bug and training on all other bugs). We
also consider the order of the bugs in the same project via the
revision numbers. Specifically, for each buggy version 𝐵 of project
𝑃 in Defects4J, all buggy versions from the other projects are first
included in the training data. Besides, we separate all the buggy
versions of the project 𝑃 into two groups: 1) one buggy version as
the test data for model prediction, and 2) all the buggy versions of
the same project 𝑃 that have occurred before the buggy version 𝐵
are also included in the training data. If the latter group is empty,
only the buggy versions from the other projects are used for training
to predict for the current buggy version in 𝑃 .

We tune all models using autoML [5] to find the best param-
eter setting. We directly follow the baseline studies to select the
parameters that need to be tuned in the baselines. We tuned our
model with the following key hyper-parameters to obtain the best
performance: (1) Epoch size (i.e., 100, 200, 300); (2) Batch size (i.e.,
64, 128, 256); (3) Learning rate (i.e., 0.001, 0.003, 0.005, 0.010); (4)
Vector length of word representation and its output (i.e., 150, 200,
250, 300); (5) The output channels of convolutional layer (16, 32,
64,128); (6) The number of convolutional layers (3, 5, 7, 9).

DeepFL was proposed for the method-level FL. For comparison,
following a prior study [24], we use only DeepFL’s spectrum-based
and mutation-based features applicable to detect faulty statements.

Evaluation Metrics. We use the following metrics for evaluation:
(1) Hit-N measures the number of bugs that the predicted set

contains at least 𝑁 faulty statements (i.e., the predicted and oracle
sets for a bug overlap at least 𝑁 statements regardless of the sizes of
both sets). Both precision and recall can be computed from Hit-N.

(2) Hit-All is the number of bugs in which the predicted set
covers the correct set in the oracle for a bug.

(3) Hit-N@Top-𝐾 is the number of bugs that the predicted list
of the top-𝐾 statements contains at least 𝑁 faulty statements. This
metric is used when we compare the approaches in ranking.

RQ2. Impact Analysis of Dual-Task Learning Model.

Baselines. To study the impact of dual-task learning, we built two
variants of FixLocator: (1) Statement-only model: the method-level
FL model (methFL) is removed from FixLocator and only statement-
level FL (stmtFL) is kept for training. (2) Cascading model: in this
variant, dual-task learning is removed, and we cascade the output
of methFL directly to the input of stmtFL.

Procedures. The statement-only model has only the statement-
level fault localization. We ran it on all methods in the project to
find the faulty statements. We use the same training strategy and
parameter tuning as in RQ1. We use Hit-N for evaluation.

RQ3. Sensitivity Analysis. We conduct ablation analysis to
evaluate the impact of different factors on the performance: every
node feature, co-change relation, and the depth limit on the stack

trace and the execution trace. Specifically, we set FixLocator as the
complete model, and each time we built a variant by removing one
key factor, and compared the results. Except for the removed factor,
we keep the same setting as in other experiments.

RQ4. Evaluation on Python Projects. To evaluate FixLocator
on different programming languages, we ran it on the Python bench-
mark BugsInPy [2, 40] with 441 bugs from 17 different projects.

RQ5. Extrinsic Evaluation.To evaluate usefulness, we replaced
the original CC fixing-location module in DEAR [25] with FixLoca-
tor to build a variant of DEAR, namely DEAR𝐹𝑖𝑥𝐿 . We also added
FixLocator and Ochiai FL [7] to CURE [15] to build two variants:
CURE𝐹𝑖𝑥𝐿 (FixLocator + CURE) and CURE𝑂𝑐ℎ𝑖 (Ochiai+CURE).

8 EMPIRICAL RESULTS

8.1 RQ1. Comparison Results with

State-of-the-Art DL-based FL Approaches

Table 1 shows how well FixLocator’s coverage is on the actual correct

CC fixing statements (recall). The result is w.r.t. the bugs in the oracle
with different numbers 𝐾 of CC fixing statements: 𝐾= #𝐶𝐶-𝑆𝑡𝑚𝑡𝑠 = 1,
2, 3, 4, 5, and 5+. For example, in the oracle, there are 90 bugs with 3
faulty statements. FixLocator’s predicted set correctly contains all
3 buggy statements for 21 bugs (Hit-All), 2 of them for 25 bugs, and
1 faulty statement for 51 bugs. As seen, regardless of𝑁 , FixLocator
performs better in any Hit-𝑁 over the baselines for all 𝐾s. Note
that Hit-All = Hit-𝑁 when 𝑁 (#overlaps) = 𝐾 (#CC-Stmts).

Table 2 shows the summary of the comparison results in which
we sum all the corresponding Hit-𝑁 values across different numbers
𝐾 of CC fixing statements in Table 1. As seen, FixLocator can
improve CNN-FL, DeepFL, DeepRL4FL, and DEAR by 16.6%, 16.9%,
9.9%, and 20.6%, respectively, in terms of Hit-1 (i.e., the predicted
set contains at least one faulty statement). It also improves over
those baselines by 33.6%, 40.3%, 26.5%, and 57.5% in terms of Hit-2,
43.9%, 46.4%, 28.1%, and 51.9% in terms of Hit-3, 100%, 155.6%, 64.5%,
and 142.1% in terms of Hit-4. Note: Any Hit-𝑁 reflects the cases of
multiple CC statements. For example, Hit-1 might include the bugs
with more than one buggy/fixed statement. Importantly, our tool

666

Fault Localization to Detect Co-change Fixing Locations ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 1: RQ1. DetailedComparisonw.r.t. FaultswithDifferent

of CC Fixing Statements in an Oracle Set (Recall)

#CC-Stmts
in Oracle

Metrics CNN-FL DeepFL DeepRL4FL DEAR Fix-
Locator

1 (199 bugs) Hit-1 78 76 84 74 93

2 (142 bugs) Hit-1 67 64 70 65 75
Hit-2 33 30 34 28 41

3 (90 bugs)
Hit-1 46 44 47 42 51
Hit-2 21 20 23 20 25
Hit-3 11 10 13 12 21

4 (78 bugs)

Hit-1 41 42 42 40 45
Hit-2 22 19 21 20 24
Hit-3 9 7 8 5 12
Hit-4 3 2 4 2 9

5 (43 bugs)

Hit-1 15 14 16 13 18
Hit-2 9 8 9 7 12
Hit-3 6 5 6 5 7
Hit-4 3 2 3 2 3
Hit-5 1 1 1 0 1

5+ (283 bugs)

Hit-1 85 91 93 87 105
Hit-2 40 42 45 41 65
Hit-3 31 34 37 32 42
Hit-4 17 14 21 15 34
Hit-5 4 3 5 2 8
Hit-5+ 1 2 3 1 3

Table 2: RQ1. Comparison Results with DL-based FL Models

Metrics CNN-FL DeepFL DeepRL4FL DEAR FixLocator
Hit-1 332 331 352 321 387
Hit-2 125 119 132 106 167
Hit-3 57 56 64 54 82
Hit-4 23 18 28 19 46
Hit-5 5 4 6 2 9
Hit-5+ 1 2 3 1 3
Hit-All 127 121 139 115 168

produced the exact-match sets for 168/864 bugs (19.5%), relatively
improving over the baselines 32%, 38.8%, 20.8%, and 46.1% in Hit-All.
It performs well in Hit-All when the number of CC statements 𝐾=1-
4. However, producing the exact-matched sets for all statements
when 𝐾 ≥ 5 is still challenging for all the models.

Table 3 shows the comparison on how precise the results are in a
predicted set. For example, when the number of the CC statements

in a predicted set is 𝐾 ′=3, there are 23 bugs in which all of those
3 faulty statements are correct (there might be other statements
missing). There are 27 bugs in which two of the 3 predicted, faulty
statements are correct. There are 55 bugs in which only one of the
3 predicted, faulty statements are correct. As seen, regardless of 𝑁 ,
FixLocator is more precise than the baselines for all 𝐾 ′s.

Table 4 shows the comparison as ranking is considered (Hit-
N@Top-𝐾). As seen, in the ranking setting, FixLocator locates
more CC fixing statements than any baseline. For example, FixLo-
cator improves the best baseline DeepRL4RL by 23.9% in Hit-
2@Top-5, 22.6% in Hit-3@Top-5, 43.8% in Hit-4@Top-5, and 22.2%
in Hit-5@Top-5, respectively. The same trend is for Hit-N@Top-10.

We did not compare with the spectrum-/mutation-based FL mod-
els since DeepRL4FL [24] was shown to outperform them.

Table 3: RQ1. DetailedComparisonw.r.t. FaultswithDifferent

of CC Fixing Statements in a Predicted Set (Precision)

#Stmts in
Predicted Set

Metrics CNN-FL DeepFL DeepRL4FL DEAR Fix-
Locator

1 (203 bugs) Hit-1 83 79 87 75 (183) 99

2 (165 bugs) Hit-1 75 72 78 71 (172) 83
Hit-2 36 34 39 34 (172) 45

3 (120 bugs)
Hit-1 52 46 48 41 (129) 55
Hit-2 24 22 26 19 (129) 27
Hit-3 12 11 14 10 (129) 23

4 (96 bugs)

Hit-1 47 49 46 33 (78) 51
Hit-2 24 21 22 14 (78) 26
Hit-3 11 9 10 5 (78) 14
Hit-4 5 3 6 1 (78) 11

5 (73 bugs)

Hit-1 17 16 17 12 (55) 19
Hit-2 10 10 11 7 (55) 14
Hit-3 8 6 7 4 (55) 9
Hit-4 3 3 4 1 (55) 5
Hit-5 2 1 2 0 (55) 2

5+ (178 bugs)

Hit-1 58 69 76 68(218) 80
Hit-2 31 32 34 32 (218) 55
Hit-3 26 30 33 24 (218) 36
Hit-4 15 12 18 16 (218) 30
Hit-5 3 3 4 5 (218) 7
Hit-5+ 1 2 3 2 (218) 3

Table 4: RQ1. Comparison with Baselines w.r.t. Ranking

Hit-N@Top-5 Hit-N@Top-10
N= 1 2 3 4 5 1 2 3 4 5 5+

CNN-FL 533 311 133 33 4 578 386 166 42 10 81
DeepFL 525 298 131 35 6 563 364 156 42 10 83

DeepRL4FL 586 339 159 32 9 623 407 186 48 13 92
DEAR 501 274 119 25 3 544 341 142 36 7 71

FixLocator 633 420 195 46 11 690 470 217 51 13 94

Table 5: Overlapping Analysis Results for Hit-1

FixLocator
Unique-Baseline Overlap Unique-FixLocator

CNN-FL 48 284 103
DeepFL 54 277 110
DeepRL4FL 61 291 96
DEAR 35 286 101

We also performed the analysis on the overlapping between
the results of FixLocator and each baseline. As seen in Table 5,
FixLocator can detect at least one correct faulty statement in 103
bugs that CNN-FL missed, while CNN-FL can do so only in 48 bugs
that FixLocator missed. Both FixLocator and CNN-FL can do so
in the same 284 bugs. In brief, FixLocator can detect at least one
correct buggy statement in more “unique” bugs than any baseline.

8.2 RQ2. Impact Analysis Results on Dual-Task

Learning

Table 6 shows that FixLocator has better performance in detecting
CC fixing statements than the two variants (statement-only and
cascading models). This result shows that the dual-task learning

helps improve FL over the cascading model (methFL → stmtFL).

667

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yi Li, Shaohua Wang, and Tien N. Nguyen

Table 6: RQ2. Impact Analysis of Dual-Task Learning

Variant Hit-1 Hit-2 Hit-3 Hit-4 Hit-5 Hit-5+
Stmt-only 304 111 51 11 3 2
Cascading 343 125 61 19 3 3
FixLocator 387 167 82 46 9 3

Table 7: RQ3. Sensitivity Analysis of Method- and Statement-

Level Features. ML: Method-level; SL: Statement-level

Model Variant Hit-N
1 2 3 4 5 5+

ML

w/o Method Content 366 158 78 39 9 3
w/o Method Structure 357 155 80 40 8 3
w/o Similar Buggy Method 361 157 79 44 9 3
w/o ML Co-change Rel. 355 152 77 40 8 3

SL

w/o Code Coverage 348 151 75 38 7 2
w/o AST Subtree 354 153 77 41 8 3
w/o Variables 373 162 78 42 9 3
w/o SLCo-change Relation 351 150 76 39 7 2
FixLocator 387 167 82 46 9 3

Table 8: RQ3. Sensitivity Analysis (Depth of Traces)

Depth Hit-N
1 2 3 4 5 5+

5 371 162 74 42 8 3
10 387 167 82 46 9 3
15 368 158 71 39 7 3

Moreover, without the impact of method-level FL (methFL), the per-
formance decreases significantly, indicating methFL’s contribution.

8.3 RQ3. Sensitivity Analysis Results

8.3.1 Impact of the Method-Level (ML) Features and ML Co-change
Relation. Among all the method-level features/attributes of FixLo-
cator, the feature of co-change relations among methods has the

largest impact. Specifically, without the co-change feature among
methods, Hit-1 is decreased by 8.3%. Moreover, themethod structure

feature, represented as AST, has the second largest impact. Without
the method structure feature, Hit-1 is decreased by 7.8%.

Among the last two method-level features with least impact, the
method content feature has less impact than the similar-buggy-
method feature. This shows that the bugginess nature of a method

and similar ones has more impact than the tokens of the method itself.

8.3.2 Impact of the Statement-Level (SL) Features and SL Co-change
Relation. Among all the statement-level features, Code Coverage
has the largest impact. Without Code Coverage feature, Hit-1 is
decreased by 10.1%. The co-change relations among statements
have the second largest impact among all SL features/attributes.
Specifically, without the co-change relations among statements,
Hit-1 is decreased by 9.3%.

8.3.3 Impact of the Depth Level of Stack Trace. As seen in Table 8,
FixLocator can achieve the best performance when depth=10. The
cases with depth= 5 or 15 can bring into analysis too few or too
many irrelevant methods, causing more noises to the model. Thus,
we chose depth=10 for our experiments.

1 public UnivariateRealPointValuePair optimize(final FUNC f, GoalType goal,
double min, double max) throws FunctionEvaluationException {

2 - return optimize(f, goal, min, max, 0);
3 + return optimize(f, goal, min, max, min + 0.5 * (max - min));
4 }
5 public UnivariateRealPointValuePair optimize(final FUNC f, GoalType goal,

double min, double max, double startValue) throws Func...Exception {
6 ...
7 try {
8 - final double bound1 = (i == 0) ? min : min + generator.nextDouble()...;
9 - final double bound2 = (i == 0) ? max : min + generator.nextDouble()...;
10 - optima[i] = optimizer.optimize(f, goal, FastMath.min(bound1, bound2),...;
11 + final double s = (i == 0) ? startValue : min + generator.nextDouble()...;
12 + optima[i] = optimizer.optimize(f, goal, min, max, s); ...
13 }

Figure 10: An Illustrating Example

Table 9: Ranking of CC Fixing Locations for Figure 10

LOC CNN-FL DeepFL DeepRL4FL DEAR FixLocator

Line 2 1 22 2 27 ⋆ (no rank)
Line 8 24 3 6 12 ⋆ (no rank)
Line 9 25 4 7 13 ⋆ (no rank)
Line 10 50+ 13 16 39 ⋆ (no rank)

Table 10: RQ4. BugsInPy (Python Projects) versus Defects4J

(Java Projects). P% = |Located Bugs|/|Total Bugs in Datasets|

Metrics BugsInPy (Python projects) Defects4J (Java projects)
P% Cases P% Cases

Hit-1 43.8% 193 46.3% 387
Hit-2 16.3% 72 20.0% 167
Hit-3 10.2% 45 9.8% 82
Hit-4 3.4% 15 5.5% 46
Hit-5 0.7% 3 1.1% 9
Hit-5+ 0% 0 0.4% 3

8.3.4 Illustrating Example. Table 9 displays the ranking from the
models for Figure 10. FixLocator correctly produces all 4 CC fixing
statements in its predicted set (lines 2,8,9, and 10 in two methods).
The statement-only model detects only line 2 as faulty. It completely
missed lines 8–10 of the optimize method. In contrast, the cascading
model detects lines 8–10, however, its MethFL considers the first
method (optimize(...) at line 1) as non-faulty, thus, it did not detect
the buggy line 2 due to its cascading.

The baselines CNN-FL, DeepFL, DeepRL4FL, and DEAR detect
only 1, 2, 1, and 0 faulty statements (bold cells) in their top-4 re-
sulting lists, respectively. In brief, the baselines are not designed to
detect CC fixing locations, thus, their top-𝐾 lists are not correct.

8.4 RQ4. Evaluation on Python Projects

As seen in Table 10, FixLocator can localize 193 faulty statements
with Hit-1. This shows that the performance on the Python projects
is consistent with that on the Java projects. Specifically, at the
statement level, the percentages of the total Python and Java bugs
that can be localized are similar, e.g., 43.8% vs. 46.3% with Hit-1.

8.5 RQ5. Extrinsic Evaluation: Usefulness in

Automated Program Repair

In Table 11, with its better CC fixing-locations, FixLocator can
help DEAR𝐹𝑖𝑥𝐿 relatively improve over DEAR in auto-fixing 10.5%

668

Fault Localization to Detect Co-change Fixing Locations ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 11: RQ5. Usefulness in APR (running on Defects4J)

Bug 1-Meth 1-Meth M-Meths M-Meths M-Meths Total
Types 1-Stmt M-Stmt 1-Stmt M-Stmts Mix-Stmts
DEAR 64 12 24 2 3 105

DEAR𝐹𝑖𝑥𝐿 69 13 26 2 4 116

CURE𝑂𝑐ℎ𝑖 84 0 0 0 0 84
CURE𝐹𝑖𝑥𝐿 79 11 26 1 3 120

Table 12: RQ5. Detailed Results on Usefulness in APR

Projects in Defects4J DEAR DEAR𝐹𝑖𝑥𝐿 CURE𝑂𝑐ℎ𝑖 CURE𝐹𝑖𝑥𝐿
Chart 8/16 9/18 6/13 9/19
Cli 5/11 7/14 4/11 7/16
Closure 7/11 8/13 6/10 9/14
Codec 1/4 1/4 1/4 1/4
Collections 0/0 0/0 0/0 0/0
Compress 7/15 7/16 5/12 8/17
Csv 2/5 2/6 1/4 2/5
Gson 1/3 1/3 1/2 1/3
JacksonCore 4/9 5/10 3/7 6/9
JacksonDatabind 16/27 17/29 13/25 16/28
JacksonXml 1/1 1/1 1/1 1/1
Jsoup 13/21 14/22 10/17 16/23
JxPath 8/14 9/15 6/13 10/17
Lang 8/15 9/17 9/16 11/15
Math 20/33 20/31 16/25 20/35
Mockito 1/2 1/2 1/1 1/2
Time 3/6 3/6 1/3 3/6
Total 105/193 116/207 84/164 120/214

X/Y: are the numbers of correct and plausible patches; Dataset: Defects4J

Table 13: Running Time

Models CNN-FL DeepFL DeepRL4FL DEAR FixLocator
Training Time 4 hours 5 mins 7 hours 21 hours 6 hours
Prediction Time 2 seconds 1 second 4 seconds 9 seconds 2 seconds

more bugs (11 bugs) across all bug types. Moreover, CURE𝐹𝑖𝑥𝐿
(FixLocator+ CURE) can fix 42.9% relatively more bugs (36 bugs)
than CURE𝑂𝑐ℎ𝑖 (Ochiai+CURE). Especially, CURE𝐹𝑖𝑥𝐿 fixed 41more

bugs with multi-statements or multi-methods. The 5 bugs with single
buggy statements that CURE𝐹𝑖𝑥𝐿 missed are due to FixLocator in-
correctly producing more than one fixing locations. Table 12 shows
that FixLocator can help DEAR and CURE improve both correct
and plausible patches (passing all the tests) across all projects.

8.6 Further Analysis

8.6.1 Running Time. As seen in Table 13, except for DeepFL (using
a basic neural network), the other approaches have similar train-
ing and prediction time. Importantly, prediction time is just a few
seconds, making FixLocator suitable for interactive use.

8.6.2 Limitations. First, our tool does not detect well the sets with
+5 CC fixing statements since it does not learn well those large
co-changes. Second, it does not work in locating a fault that require
only adding statements to fix (neither do all baselines). Third, if
the faulty statements/methods occur far from the crash method in
the execution traces, it is not effective. Finally, it does not have any
mechanism to integrate program analysis in expanding the faulty
statements having dependencies with the detected faulty ones.

8.6.3 Threats to Validity. (1) We evaluated FixLocator on Java and
Python. Our modules are general for any languages. (2) We com-
pared the models only on two datasets that have test cases. (3) For

comparison, we use only DeepFL’s features applicable to statement-
level FL although it works at the method level. Other baselines
work directly at the statement level. (4) In 501 bugs in BugsInPy,
the third-party tool cannot process 60 of them. (5) We focus on CC
fixing statements, instead of methods, due to bug fixing purpose.

9 RELATEDWORK

Several types of techniques have been proposed to locate faulty
statements/methods. However, none of the existing FL approaches
detect CC fixing locations. A related work is DEAR [25], which uses
a combination of BERT and data flows to locate CC statements.
Hercules APR tool [37] can detect multiple buggy hunks of code.
It can detect only the buggy hunks with similar statements (repli-
cated fixes), while our tool detects general CC fixing locations. In
comparison, FixLocator and Hercules detect 26 and 15 multi-hunk
bugs respectively among 395 bugs in Defects4J-v1.2 [37].

The Spectrum-based Fault Localization (SBFL) [6, 8, 16, 27, 29,
33, 43, 46] and Mutation-based Fault Localization (MBFL) [11, 31,
32, 35, 47, 48] have been proposed for statement-level FL. Their key
limitations are that they cannot differentiate the statements with the
same scores or cannot have effective mutators to catch a complex
fault. Among the learning-based FL models, learning-to-rank FL
approaches [9, 23, 38, 45] aim to locate faulty methods. Statistical
FL has been combined with casual inference for statement-level
FL [20]. All of those models do not locate CC fixing statements.

Machine learning has also been used for FL. Early neural network-
based FL [10, 42, 51, 53] mainly use test coverage data. A limi-
tation is that they cannot distinguish elements accidentally ex-
ecuted by failed tests and the actual faulty elements [23]. Deep
learning-based approaches, GRACE [28], DeepFL [22], CNNFL [50],
DeepRL4FL [24] achieve better results. GRACE [28] proposes a new
graph representation for a method and learns to rank the faulty
methods. In contrast, FixLocator is aimed to locate multiple CC
fixing statements in a fix for a fault. DeepFL and DeepRL4FL can
outperform the learning-based and early neural networks FL tech-
niques, such as MULTRIC [45], TrapT [23], and Fluccs [38]. In our
empirical evaluation, we showed that FixLocator can outperform
those baselines under study in detecting CC fixing statements.

10 CONCLUSION

We present FixLocator, a novel DL-based FL approach that aims to
locate co-change fixing locations within one or multiple methods.
The key ideas of FixLocator include (1) a new dual-task learning
model of method- and statement-level fault localization to detect
CC fixing locations; (2) a novel graph-based representation learning
with co-change relations amongmethods and statements; (3) a novel
feature in co-change methods/statements. Our empirical results
show that FixLocator relatively improves over the state-of-the-art
FL baselines by locating more CC fixing statements from 26.5% to
155.6%, and help APR tools improve its bug-fixing accuracy.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Founda-
tion (NSF) grants CNS-2120386, CCF-1723215, CCF-1723432, TWC-
1723198, and the US National Security Agency (NSA) grant NCAE-
C-002-2021 on Cybersecurity Research Innovation.

669

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Yi Li, Shaohua Wang, and Tien N. Nguyen

REFERENCES

[1] 2019. The Defects4J Data Set. https://github.com/rjust/defects4j
[2] 2020. The BugsInPy Data Set. https://github.com/soarsmu/BugsInPy
[3] 2021. FixLocator. https://github.com/fixlocatorresearch/fixlocatorresearch
[4] 2021. JDT. https://www.eclipse.org/jdt/core/tools/jdtcoretools/index.php
[5] 2021. The NNI autoML tool. https://github.com/microsoft/nni
[6] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coefficients for software fault localization. In 2006 12th Pacific Rim

International Symposium on Dependable Computing (PRDC’06). IEEE, 39–46.
[7] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coefficients for software fault localization. In 2006 12th Pacific Rim

International Symposium on Dependable Computing (PRDC’06). IEEE, 39–46.
[8] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of

spectrum-based fault localization. In Testing: Academic and Industrial Conference

Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89–98.

[9] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings

of the 25th International Symposium on Software Testing and Analysis (ISSTA’16).
ACM, 177–188.

[10] Lionel C Briand, Yvan Labiche, and Xuetao Liu. 2007. Using machine learning to
support debugging with tarantula. In The 18th IEEE International Symposium on

Software Reliability (ISSRE’07). IEEE, 137–146.
[11] Timothy Alan Budd. 1981. MUTATION ANALYSIS OF PROGRAM TEST DATA.

(1981).
[12] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. TreeCaps: Tree-Based Capsule

Networks for Source Code Processing. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 35. 30–38.
[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014).
arXiv:1406.1078 http://arxiv.org/abs/1406.1078

[15] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In Proceedings of the 43rd

International Conference on Software Engineering. 1161–1173. https://doi.org/10.
1109/ICSE43902.2021.00107

[16] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM inter-

national Conference on Automated Software Engineering (ASE’05). ACM, 273–282.
[17] J. A. Jones, M. J. Harrold, and J. Stasko. 2002. Visualization of test information

to assist fault localization. In Proceedings of the 24th International Conference on

Software Engineering (ICSE’02). 467–477. https://doi.org/10.1145/581396.581397
[18] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van Hoorn,

and David Lo. 2017. A critical evaluation of spectrum-based fault localization
techniques on a large-scale software system. In IEEE International Conference on

Software Quality, Reliability and Security (QRS’17). IEEE, 114–125.
[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[20] Yiğit Küçük, Tim AD Henderson, and Andy Podgurski. 2021. Improving fault

localization by integrating value and predicate based causal inference techniques.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 649–660.

[21] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proceedings of the 34th International Conference on Software

Engineering (ICSE ’12). IEEE Press, 3–13.
[22] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating

multiple fault diagnosis dimensions for deep fault localization. In Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 169–180.

[23] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for
fault localization. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 1–30.

[24] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault Localization with Code
Coverage Representation Learning. In Proceedings of the 43rd International Con-

ference on Software Engineering (ICSE’21). IEEE.
[25] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2022. DEAR: A Novel Deep Learning-

based Approach for Automated Program Repair. In Proceedings of the 44th Inter-

national Conference on Software Engineering (ICSE’22). ACM Press.
[26] Ziyao Li, Liang Zhang, and Guojie Song. 2019. GCN-LASE: Towards adequately

incorporating link attributes in graph convolutional networks. arXiv preprint
arXiv:1902.09817 (2019).

[27] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
2005. Scalable Statistical Bug Isolation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation (Chicago, IL,
USA) (PLDI ’05). Association for Computing Machinery, New York, NY, USA,
15–26. https://doi.org/10.1145/1065010.1065014

[28] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 664–676.
[29] Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. 2014.

Extended comprehensive study of association measures for fault localization.
Journal of software: Evolution and Process 26, 2 (2014), 172–219.

[30] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016.
Cross-stitch networks formulti-task learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3994–4003.

[31] S. Moon, Y. Kim, M. Kim, and S. Yoo. 2014. Ask the Mutants: Mutating Faulty
Programs for Fault Localization. In IEEE International Conference on Software

Testing, Verification and Validation. 153–162. https://doi.org/10.1109/ICST.2014.28
[32] Vincenzo Musco, Martin Monperrus, and Philippe Preux. 2017. A large-scale

study of call graph-based impact prediction using mutation testing. Software
Quality Journal 25, 3 (2017), 921–950.

[33] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-

ology (TOSEM) 20, 3 (2011), 11.
[34] Mike Papadakis and Yves Le Traon. 2012. Using mutants to locate "unknown"

faults. In IEEE International Conference on Software Testing, Verification and Vali-

dation. IEEE, 691–700.
[35] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault

localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.
[36] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-

guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[37] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing Evolution
for Multi-Hunk Program Repair. IEEE Press. https://doi.org/10.1109/ICSE.2019.
00020

[38] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis. 273–283.
[39] Unknown. 2022. Bilinear Interpolation. https://en.wikipedia.org/wiki/Bilinear_

interpolation
[40] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin

Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, et al. 2020.
BugsInPy: a database of existing bugs in Python programs to enable controlled
testing and debugging studies. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 1556–1560.
[41] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A

Survey on Software Fault Localization. IEEE Trans. Softw. Eng. 42, 8 (Aug. 2016),
707–740. https://doi.org/10.1109/TSE.2016.2521368

[42] WEricWong and YuQi. 2009. BP neural network-based effective fault localization.
International Journal of Software Engineering and Knowledge Engineering 19, 04
(2009), 573–597.

[43] W Eric Wong, Yu Qi, Lei Zhao, and Kai-Yuan Cai. 2007. Effective fault localiza-
tion using code coverage. In 31st Annual International Computer Software and

Applications Conference (COMPSAC 2007), Vol. 1. IEEE, 449–456.
[44] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. 2014.

Crashlocator: Locating crashing faults based on crash stacks. In Proceedings

of the 2014 International Symposium on Software Testing and Analysis. 204–214.
[45] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple rank-

ing metrics for fault localization. In IEEE International Conference on Software

Maintenance and Evolution (ICSME’14). IEEE, 191–200.
[46] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-

inducing program edits based on spectrum information. In Proceedings of the 27th

IEEE International Conference on Software Maintenance (ICSM’11). IEEE, 23–32.
[47] Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan De Halleux, and

Hong Mei. 2010. Test generation via dynamic symbolic execution for mutation
testing. In IEEE International Conference on Software Maintenance (ICSM’10). IEEE,
1–10.

[48] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting Mechanical
Faults to Localize Developer Faults for Evolving Software. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages and Applications (Indianapolis, Indiana, USA) (OOPSLA ’13).
Association for Computing Machinery, New York, NY, USA, 765–784. https:
//doi.org/10.1145/2509136.2509551

[49] Zhenyu Zhang, Wing Kwong Chan, TH Tse, Bo Jiang, and Xinming Wang. 2009.
Capturing propagation of infected program states. In Proceedings of the 7th joint

meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering. 43–52.

670

https://github.com/rjust/defects4j
https://github.com/soarsmu/BugsInPy
https://github.com/fixlocatorresearch/fixlocatorresearch
https://www.eclipse.org/jdt/core/tools/jdtcoretools/index.php
https://github.com/microsoft/nni
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1145/581396.581397
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1109/ICST.2014.28
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1109/ICSE.2019.00020
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2509136.2509551
https://doi.org/10.1145/2509136.2509551

Fault Localization to Detect Co-change Fixing Locations ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

[50] Zhuo Zhang, Yan Lei, XiaoguangMao, and Panpan Li. 2019. CNN-FL: An effective
approach for localizing faults using convolutional neural networks. In 2019 IEEE

26th International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 445–455.
[51] Zhuo Zhang, Yan Lei, Qingping Tan, Xiaoguang Mao, Ping Zeng, and Xi Chang.

2017. Deep Learning-Based Fault Localization with Contextual Information. Ieice
Transactions on Information and Systems 100, 12 (2017), 3027–3031.

[52] Lei Zhao, Lina Wang, Zuoting Xiong, and Dongming Gao. 2010. Execution-aware
fault localization based on the control flow analysis. In International Conference

on Information Computing and Applications. Springer, 158–165.
[53] Wei Zheng, Desheng Hu, and Jing Wang. 2016. Fault localization analysis based

on deep neural network. Mathematical Problems in Engineering 2016 (2016).
https://doi.org/10.1155/2016/1820454

671

https://doi.org/10.1155/2016/1820454

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Example and Observations
	2.2 Key Ideas

	3 FixLocator: Approach Overview
	3.1 Training Process
	3.2 Predicting Process

	4 Feature Extraction
	4.1 Method-Level Feature Extraction GM
	4.2 Statement-Level Feature Extraction gM

	5 Feature Representation Learning
	5.1 Method-Level Representation Learning
	5.2 Statement-Level Representation Learning
	5.3 Feature Representation Learning

	6 Dual-Task Learning for Fault Localization
	6.1 Graph Convolutional Network (GCN) for FL
	6.2 Dual-Task Learning with Cross-stitch Units

	7 Empirical Evaluation
	7.1 Research Questions
	7.2 Experimental Methodology

	8 Empirical Results
	8.1 RQ1. Comparison Results with State-of-the-Art DL-based FL Approaches
	8.2 RQ2. Impact Analysis Results on Dual-Task Learning
	8.3 RQ3. Sensitivity Analysis Results
	8.4 RQ4. Evaluation on Python Projects
	8.5 RQ5. Extrinsic Evaluation: Usefulness in Automated Program Repair
	8.6 Further Analysis

	9 Related Work
	10 Conclusion
	References

